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ABSTRACT

For decades, one-time verification has been the standard for user

verification at entry points, office rooms, etc. However, such ap-

proaches request users to provide their secrets (e.g., entering pass-

words and collecting fingerprints) and re-verify (e.g., screen shut-

down) manually. Thus, they cannot confirm whether the user is

a legitimate or an imposter after verification, which raises the ur-

gent demand for a more convenient and secure solution to perform

continuous user verification. However, existing continuous verifi-

cation methods heavily rely on users’ active participation, which is

inconvenient. Toward this end, we propose a continuous user veri-

fication system, BioTag, which utilizes the low-cost radio frequency

identification (RFID) technology to capture unique physiological

characteristics rooted in the users’ respiration motions for continu-

ous user verification. Specifically, we use two RFID tags attached

to a user’s chest and abdomen to capture the user’s intrinsic respi-

ratory patterns via RFID signals. We develop respiratory feature

extraction methods based on waveform morphology analysis and

fuzzy wavelet transformation (FWPT) to derive unique biometric

information from the user’s respiration signals. Furthermore, we

develop an adaptive classifier using the gradient boosting decision

tree (GBDT) to identify legitimate users and attackers accurately.

Extensive experiments involving 41 participants demonstrate that

BioTag can robustly authenticate users and detect various types

of adversaries with low training effort. In particular, our system

can achieve over 95.2% and 94.8% verification accuracy on random

attack and imitation attack scenarios, respectively.
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1 INTRODUCTION

Traditional one-time verification methods request a user to pro-

vide his/her credentials (e.g., password or fingerprint) during each

verification process. Such practices are inconvenient and flawed

from security perspectives. For instance, the user may need to re-

repeatedly provide the password every time after screen shutdown,

which is tedious and annoying. The more serious problem is that

the credentials of the legitimate are vulnerable to many attacks

(e.g., shoulder surfing attack [12] and smudge attack [2]), which

make the one-time verification system compromisable. Recently,

continuous user verification has attracted much attention due to

its capability of periodically verifying the user’s identity without

active user inputs. As a result, it has shown a great potential to

act as a second verification factor to the one-time verification and

address its concerns.

Existing continuous verification approaches can be categorized

into two categories (i.e., behavioral-based and physiological-based).

Behavioral-based continuous verification leverages the specific hu-

man physical behaviors, such as gait pattern [34], keystroke [25],

and hand gestures [15] to identify the user. Although these stud-

ies enable continuous user verification, they rely on users’ active

participation, which is intrusive and inconvenient in reality. Un-

like behavioral-based approaches, physiological-based approaches

could leverage always-exist vital signs to perform non-intrusive

user verification continuously. Researchers have leveraged the car-

diac biometrics [13], speech characteristics [33], and respiratory

patterns [14] to perform continuous user verification. However,

all these existing approaches require dedicated devices or users’

active participation, which are not applicable in many practical

scenarios. Unlike the existing work, Liu et al. [14] proposed a con-

tinuous verification system to capture the respiratory patterns by

leveraging WiFi technology. Although the WiFi-based approaches

do not require users to wear any devices, they cannot provide ade-

quate user authentication for multiple users simultaneously. RFID

technology has been proposed to enable passive breathing rate mon-

itoring [19, 35] and user verfication with low costs. RF badge [19]

adopts a badge with 4 tags to verify the user by capturing vital

signs from the chest. However, it is not applicable to the users using

abdominal breathing [26] and it is hard to keep the badge in the

designated location and angle to capture stable RFID signals.

In this work, we devise an innovative RFID-based continuous

verification system, BioTag, based on respiratory biometrics inde-

pendent of any specific activities. BioTag leverages two low-RFID

tags in a user’s chest and abdomen areas to track the user’s unique

respiratory body movements (e.g., chest, abdomen, thoracic and

diaphragm movements) by using the phase dynamics in the radio
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(a) Illustration of working flow (b) Illustrations of applications

Figure 1: Deployment of our system and example applications of continuous user verification that leverages respiratory motions captured by

off-the-shelf RFID.

frequency signals backscattered from the tags. Different from exist-

ing works, users just need to wear the clothes with two passive RFID

tags embedded at the chest and abdomen, which is more convenient

than existing methods. Furthermore, the two tags attached to the

abdomen and chest can comprehensively capture the fine-grained

respiratory features caused by the respiratory motions of the dif-

ferent parts of the human body. As a result, BioTag achieves high

verification accuracy on different people using different breathing

styles with only a few training costs. In addition, our approach can

verify multiple users simultaneously without performance reduc-

tion. Our system targets the professionals at different workplaces

who demand convenient user verification and are willing to provide

their identities in their work or business. For example, In a non-

proctor exam scenario, our system can keep verifying examinees

after they present their ID documents and enter the examination

venue. Our system can also keep verifying the identities of ground

staff and administrators after verifying their identities using fin-

gerprints at the airport security checkpoint. Figure 1 illustrates the

basic idea and real-world application scenarios of our system.

There are many challenges in realizing such non-intrusive con-

tinuous user verification using RFID in real-world scenarios. First,

people have different breathing styles (e.g., breathe with the chest,

breathe with the abdomen, or both), which results in difficulty lo-

cating the optimal tag location for capturing the clear respiratory

signals of various people. Second, the human dynamics caused by

respiratory motions are very subtle and easily interfered with by

many factors in real environments. It is non-trivial to determine fea-

tures from RFID signals that are robust and effective for capturing

users’ unique respiratory characteristics. Third, human respiratory

patterns could drift slightly on different days [24] which leads to

the changes in the RFID waveform pattern and potentially impact

the performance of user verification.

To address these challenges, we first conducted an extensive pre-

liminary study and finalized two tags attaching locations as chest

and abdomen. Specifically, these two locations are chosen to guaran-

tee a clear respiratory pattern being captured for different breathing

ways. We investigate and determine to use waveform morphology

analysis and fuzzy wavelet packet transform (FWPT) [11] to cap-

ture unique characteristics of respiratory motions for continuous

verification. Moreover, our system adopts an adaptive updating

mechanism to automatically accommodate the user’s respiratory

signal changes over time based on adaptive training of associated

classifiers. The main contributions of our work are summarized as

follows:

• The system can utilize RFID tags attached to users’ clothes

to capture the unique respiratory patterns without requiring

active user participation.

• We perform a comprehensive study to determine the best

position on human bodies to capture users’ respiratory pat-

terns using RFID tags. Our study demonstrates that two tags

attached to the chest and abdomen are sufficient to derive

unique respiratory characteristics for accurate user verifica-

tion verification.

• We develop new respiratory features that can effectively

extract unique user biometric information through fiducial-

based analysis and fuzzy-wavelet-packet-based analysis. We

also develop an adaptive learning-based classifier to ensure

robust continuous user verification under different attacks.

• Our extensive experiments involve 41 volunteers and differ-

ent setups of RFID devices and attack models. The results

demonstrate that our system can achieve over 94.8% verifi-

cation accuracy while robustly detecting various types of

attacks and less than 3.9% false-positive rate.

2 RELATEDWORK
Existing studies have shown that vital signs (i.e., heartbeat and

respiration) can be used for identifying users. For instance, elec-

trocardiogram (ECG) [21], photoplethysmography (PPG) [9], and

cardiac motions [13] have been employed to identify users. Breath-

Print [5] has exploited the breathing sound for user verification.

However, these approaches require users to either attach sensors

to their body or use dedicated sensors that are not readily available

in the commodity devices.

WiFi-based sensing has attracted considerable attention from

many researchers due to the prevalence of wireless signals in indoor

environments. Channel state information (CSI) has been proposed

to capture human behaviors, such as gait patterns [34], and activi-

ties [28] to perform user verification. These approaches can only

verify users when they perform activities that are not always avail-

able in practice. Few works leverage WiFi to capture vital signs for

user verification. For instance, Liu et al. [14] can identify users by

extracting respiration related signals from CSI. Although it does not

require users to perform activities, WiFi is not scalable in multi-user

scenarios.

Recently, RFID signals have been exploited for vital signs moni-

toring. For example, Zhang et al. [35] attach tags on the front and

back of the abdomen and extract users breathing rate in moving

scenarios. TagBreathe [29] places three tags on the chest, lower

192



BioTag: Robust RFID-based Continuous User Verification Using Physiological Features from Respiration MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea

Figure 2: Distinct respiratory patterns captured by RFID measure-

ments.

abdomen, and in between to improve the breathing rate monitoring

accuracy. RF-ECG [27] extracts heartbeat rates from RFID signals of

a tag array attached to the chest area in the clothes. However, these

works only design a one-dimension feature to estimate the respira-

tory rate, which is not comprehensive enough to capture the unique

respiratory characteristics for user verification. In the security do-

main, Au-Id [7] can identify users based on their daily activities

captured by RFID signals. However, it needs users to perform a spe-

cific activity, which is not applicable for some scenarios. RFace [31]

proposes to perform one-time user verification by extracting the

3D geometry and inner biomaterial features of faces using an RFID

tag array. More recently, RF-badge [19] designs a badge with 4 tags

to capture users’ vital signs from the chest for user verification.

However, RF-badge is not practical in use because the user is hard

to keep the badge in the designated location and angle to capture

stable RFID signals, which may introduce significant errors. Dif-

ferent from existing work, we leverage two low-cost RFID tags

that can be embedded into users’ clothes to comprehensively track

users’ unique physiological characteristics rooted in respiratory

motions in the chest and abdomen in addition to respiration rates

to perform user verification. It is more robust to environmental

noise and can support multi-user verification simultaneously.

3 APPROACH OVERVIEW
3.1 Attack Model

In this work, we assume that attackers cannot compromise the hard-

ware and software of the proposed continuous verification system

(e.g., damage the RFID reader/antenna, block the communication

between tags and the reader, damage or modify raw RFID measure-

ment, gain access to memory storage of the continuous verification

process, or have any knowledge of the trained machine learning

model). We focus on the verification of the RFID measurements. An

attacker is trying to fool and pass the verification system. Based

on this, we consider the impact of two different types of attacks to

evaluate the effectiveness of the proposed scheme as follows:

Random Attack. The attacker does not know the respiratory

pattern of a target user. When attacking the system, the attacker

stays in the same position as the target user and breathes in a

normal way in terms of the breathing rate, inspiration/expiration

rhythm, and depth.

Imitation Attack. The attacker first observes the legitimate

user’s respiration process to capture the respiratory patterns, includ-

ing breathing rates, inspiration/expiration rhythms, and breathing

(a) Tags on different lo-
cations (only 2 tags at a
time)

(b) Respiratory patterns of different locations

Figure 3: Illustration of placement study on different body locations

and representative RFID measurements.

depths. Then the attacker imitate the legitimate user’s respiratory

pattern to pass the verification system.

3.2 Feasibility Study

When a human breathes, the human respiration process includes

inspiration and expiration stages that involve complex body move-

ments. There are two types of breathing [26] causing different pat-

terns in body movements: chest breathing and abdominal breathing,

as illustrated in Figure 2a. The chest breathing is characterized by

an upward and outward movement of the chest, where the ster-

num and diaphragm move up and down. The abdominal breathing

involves little chest movements, and the sternum and diaphragm

have a reverse movement trend. Due to the complex and diverse

physiological structures of human body, the respiratory movements

related to chest, abdomen, or other part of human body will show

different amplitudes and patterns from person to person. Existing

studies [20] have demonstrated that human respiratory movement

has unique biological characteristics. Moreover, respiratory mo-

tions usually remain stable for a long time despite the variations in

ages, smoking habits, weights, and whether having mild respiratory

diseases [22]. These studies confirm that respiratory patterns can

be a good biometric for continuous user verification.

Recently, researchers and manufacturers started to embed low-

cost passive RFID tags into fabrics to achieve non-intrusive, cost-

effective healthcare monitoring [1]. Existing works [33, 35]have

shown that phase information in the backscattered signals from

RFID tags can be leveraged to monitor breathing rates. Given the

distance between the reader antenna and the tag is 𝑑 , the RFID
reader outputs a phase value 𝜃 of the backscatter radio wave from
the tag as follows:

𝜃 = (
2𝜋

𝜆
× 2𝑑 + 𝑐) mod 2𝜋, (1)

where 𝜆 is the wavelength, and 𝑐 is a constant phase offset that
captures the influence of reader and tag circuits independent of the

distance between the reader antenna and the tag. Equation 1 shows

that 𝜃 is a function𝑑 . When the tag is attached to the human body,𝑑
changes periodically following the chest and abdomen movements

when the person is breathing. Since most of the commercial off-

the-shelf RFID readers can report the received phase values with

a resolution of 2𝜋/4096 ≈ 0.0015 radians, RFID technology can

differentiate small changes in 𝑑 with a resolution of 0.0038mm [33,

35], which is good enough to capture the minute body movements

caused by respiration.
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To demonstrate the feasibility of using RFID to capture respi-

ratory patterns for user verification, we conduct experiments by

attaching RFID tags to the chests and abdomens of two volunteers

(i.e., user 1 and user 2) sitting in front of the RFID antenna and

breathing normally. Figure 2b and 2c show the phase values af-

ter filtering the noises. We observe that the respiratory patterns

corresponding to the two volunteers are significantly different in

terms of morphological characteristics, such as pulse width, pulse

amplitude, pulse shape, and small fluctuations around the wave

peak/trough in the figure. We also observe that two people use

different breathing styles resulting in distinct chest and abdomen

respiratory patterns. For instance, the phase of the chest is greater

than the abdomen for user 1 and opposite for user 2.

Placement Study. When human breaths, the movements of

the chest, abdomen, and nearby body parts generate breathing

signals. To increase the robustness and performance of the proposed

verification system, we need to find the optimal body locations that

can generate clear, strong, and stable respiratory patterns. To the

best of our knowledge, none of the existing works studies this issue.

Towards this end, we conduct a preliminary study in placing tags

on 24 different body locations to find the optimal ones (Figure 3a).

Figure 3b shows the corresponding RFID measurements in some

representative locations. We observe that we could get a clear and

stable respiratory pattern from 3 locations (i.e., locations 9, 13 and

20) at the middle chest and upper abdomen. The locations in the

neck (i.e., locations 1 to 3), upper chest (e.g., locations 4 to 8), lower

chest (i.e., locations 14 to 18), and middle abdomen (i.e., locations

22 to 24) are not suitable to use. We also observe that the RFID

patterns (e.g., locations 9 and 13) show strong symmetry relative to

the vertical center line of the human body. Therefore, we choose

Locations 13 and 20 to deploy tags in our system.

3.3 System Overview

The basic idea of our system is to capture the unique physiological

characteristics inherited from the human respiration process for

continuous user verification leveraging RFID signals. The architec-

ture of the proposed system is illustrated in Figure 4. The BioTag

first collects time-series RFID phase measurements from two RFID

tags attached to the chest and abdomen and applies Phase Calibra-

tion to calibrate the raw phases of different channels to the same

channel. The calibrated phase data is then processed to remove the

baseline drifts and high-frequency interferences via Noise Removing

(i.e., low-pass and Kalman filters). Then, we utilize the Interpolation

to resample the phase sequence with a uniformed sampling rate

since the RFID reading uses a different sampling rate in each trial.

To obtain the most reliable respiratory signals, the BioTag leverages

the threshold-based Movement Mitigation to avoid the impact of

large body movements.

Then, the system performs the Respiration Segmentation to de-

termine each segment of RFID measurements containing a full res-

piratory trough-crest-trough pattern by identifying the increasing

and decreasing trends (i.e., an up-down pattern) from the inspi-

ration and expiration processes. After extracting each respiratory

segment containing an entire inspiration and expiration process,

we employ a Dynamic Time Warping (DTW) [18] algorithm to re-

move the outliers containing the irregular respiratory patterns, and

then develop a new feature extraction mechanism adopting Fiducial

Figure 4: System architecture.

features and FWPT features to describe the unique fine-grained bio-

metric information rooted in respiratory motions comprehensively.

The Fiducial features focus on the shapes of the respiration-related

RFID patterns and capture the physiological characteristics of res-

piratory motions (i.e., respiration depths and durations in different

breathing stages). The FWPT features analyze the respiration seg-

ment in the frequency domain using the wavelets in different scales,

generating more fine-grained features that can reflect the compli-

cated frequency characteristics of respiratory motions. Unlike the

existing studies that fuse the respiratory patterns from different

tags into one pattern and lose some essential biometric informa-

tion from different body locations (e.g., chest and abdomen), our

approach keeps these respiration features of each tag as a unique

footprint to differentiate users.

During the user enrollment phase, we construct a user’s profiling

based on the extracted features and use Gradient Boosting Decision

Tree (GBDT) [6] in training the classifier. Our system can recognize

the legitimate user’s identity by the trained classifier and defend

against various attacks (i.e., random attacks or imitation attacks). If

the user’s breathing pattern has a slight change due to strenuous

exercises or fluctuating emotions, our system is designed to perform

Adaptive Training with new training data to accommodate the

changes.

During the verification phase, our system collects respiration

segments in real-time and determines whether a current user is a

legitimate user or not. Specifically, our system takes the extracted

intrinsic physiological features of the incoming respiration seg-

ments as the input to perform the Adaptive Learning-based User

Verification by using the binary GBDT classifier with trained user

profiling. Finally, our system utilizes a majority-vote rule on the

classified results of the 𝑇 continues RFID segments to perform

continuous verification.
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(a) Raw phase pattern (b) Calibrated phase pattern (c) Phase pattern after pre-processing (d) Respiration segmentation

Figure 5: Illustration of the phase calibration, filter, movement mitigation, and respiration segmentation process.

4 RESPIRATION SIGNAL ANALYSIS
4.1 Problem Formulation

We propose to leverage the RFID phase measurement 𝜃 on the

distance 𝑑 between the antenna and the RFID tag to capture the

periodical signal of breathing caused by chest and abdomen move-

ments. The RFID phase measurements 𝜃 can be modeled by the
following equation:

𝜃 = (
2𝜋

𝜆
× 2𝑑 + 𝜃𝑇 + 𝜃𝑅 + 𝜃𝑇𝐴𝐺 + 𝜃𝐴𝐼𝑅) mod 2𝜋, (2)

where 𝜆 is the wavelength, 𝑑 is the distance between antenna and
tag, 𝜃𝑇 and 𝜃𝑅 are the phases introduced by the RFID reader’s

transmitting and receiving circuits, 𝜃𝑇𝐴𝐺 is the phase introduced by

the tag’s reflection characteristic, and 𝜃𝐴𝐼𝑅 is the phase introduced

by the back-scattered channel. During a breathing cycle, 𝑑 changes
between a range of [𝑑𝑖 , 𝑑𝑒 ] corresponding to the inspiration and
expiration stages. Accordingly, we can derive 𝜃𝑖 and 𝜃𝑒 by replacing
𝑑 in Equation 2 with𝑑𝑖 and𝑑𝑒 . Thus, the phase change Δ𝜃 caused by
the user’s respiration can be calculated as Δ𝜃 = 𝜃𝑖 −𝜃𝑒 . We find that

the body movements caused by respiration are subtle, which causes

little impact on the environment and multipath effects. Therefore,

𝜃𝑇 , 𝜃𝑅 , and 𝜃𝐴𝐼𝑅 in Equation 2 can be considered the same in 𝜃𝑖
and 𝜃𝑒 . In addition, 𝜃𝑇𝐴𝐺 is also the same since the RFID tags are

the same. As such, Δ𝜃 can be simplified as:

Δ𝜃 = (
4𝜋

𝜆
× (𝑑𝑖 − 𝑑𝑒 )) mod 2𝜋 = (

4𝜋

𝜆
× Δ𝑑) mod 2𝜋. (3)

Equation 3 shows that, by using the difference between𝜃𝑖 and𝜃𝑒 , we
can eliminate the impacts of phase disturbances from environments,

circuits, and tags and enhance the signals caused by the user’s

respiration. We note that our system derives two phase change

measurements based on the RFID signals from two tags attached

to the user’s chest and abdomen (i.e., Δ𝜃𝑐ℎ𝑒𝑠𝑡 and Δ𝜃𝑎𝑏𝑑𝑜𝑚𝑒𝑛) to

capture unique respiratory characteristics for user verification com-

prehensively.

4.2 RFID Data Preprocessing

The FCC regulation requires frequency hopping for UHF RFID sys-

tems. Thus, the phase offset generated by frequency hopping should

be firstly removed in the signal pre-processing. We follow the ex-

isting calibration method [17] to restore the correct phase value

on raw RFID measurements. The calibrated RFID measurements

contain baseline drifts and high-frequency interferences. Therefore,

BioTag performs the Noise Removing to reduce such impacts. We

first apply a low-pass filter (0.5Hz) on the calibrated signal to re-
duce the high-frequency noise since the standard human breathing

rate is lower than 0.5Hz. Moreover, as the phase noises of RFID
measurements follow the Gaussian distribution [33], we design a

Kalman filter [30] to reduce the ambient noises but keep the sig-

nals caused by the respiration. In addition, our system (i.e., Impinj

R40 reader) adopts a frame slotted Aloha protocol to interrogate

the tags randomly based on the EPC Gen2 standard [23], which

makes the uniform sampling over the tags impossible (i.e., 180Hz

- 200Hz for 2 tags). To tackle this issue, we use a cubic spline in-

terpolation method [16] to re-sample the phase sequence with a

uniform sampling rate (i.e., 220Hz) based on the assumption that

the phase sequences change continuously. Comparing Figure 5a

and Figure 5b, we can see that the calibrated phase data exhibits

an obvious breathing signal, which is in great contrast to the raw

phase data with the frequency hopping offsets.

4.3 Regular Body Movement Mitigation

The respiratory motions are much smaller compared to large body

movements (e.g., standing up, walking, and shrugging). Therefore,

the relatively weak respiratory pattern will be submerged in large

motion patterns. To avoid the impacts of large body movements,

we leverage a threshold-based method [32] to remove signals with

apparent fluctuations due to the large body movements and focus

on stable repetitive signals. We use 𝜑 to denote the sum of mean

absolute deviations (MAD) of phase values for two RFID tags in a

sliding window, as shown in the following equation:

𝜑 =
1

|𝑊 |

2∑

𝑗=1

∑

𝑘∈𝑊

|ℏ𝑗 (𝑘) −𝑚(ℏ𝑗 (𝑘)) |, (4)

where𝑊 is the index set of all the packets in the sliding window,

|𝑊 | is the length of the sliding window, 2 is the number of RFID

tags, ℏ𝑗 (𝑘) is the phase for packet 𝑘 from tag 𝑗 and 𝑚(ℏ𝑗 (𝑘)) is
the average value of ℏ𝑗 (𝑘) in one sliding window. The insight of
the method is that if the subject is moving, the phase will have

larger variations (due to large changes in 𝑑). If the body movements
duration is longer compared to one respiration cycle (i.e., 3−5s) [3],

the captured RFID measurement is too noisy for the fine-grained

respiratory pattern. Therefore, we skip the RFID measurement for

the long body movements (i.e., duration > 1s) and mitigate the

impaction of short body movements (i.e., duration < 1s). Since the

human body almost stays at the same position for a short body

movement, we can remove the sudden big phase change by setting

the window size as 6s and the threshold as 0.9 experimentally.
After detecting and excluding the RFID signals caused by large

body movements, the signals still contain signal fluctuations caused

by small body motions. Such signal fluctuations also cause phase

shifts interfering with human respiration signals. We develop a

Hampel filter with a windows size of 2000 and a threshold of 0.001
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Feature Description

𝑊 Respiration Width

𝑊𝑙 Left Width

𝑊𝑟 Right Width

𝐻𝑙 Left Height

𝐻𝑟 Right Height

𝑓 𝑙𝑝 𝑓 𝑙𝑝 =𝑊𝑙
𝑝 /𝐻𝑙

𝑝 , 𝑝 = 50, 100

𝑓 𝑟𝑝 𝑓 𝑟𝑝 =𝑊𝑟
𝑝 /𝐻𝑟

𝑝 , 𝑝 = 50, 100

Figure 6: Illustration of fiducial features.

to remove all unrelated factors. Furthermore, our system adopts

a detrending method [8] to remove the constant phase shift intro-

duced by the random initial offset of the first channel before further

processing. Figure 5c shows the pre-processed signal has a suffi-

ciently clear and smooth repetitive pattern that can facilitate the

respiration segmentation and feature extraction in the next step.

5 RESPIRATION-BASED USER VERIFICATION
5.1 Respiration Segmentation and Outliers

Removing

We observe that filtered respiratory signals exhibit up-down pat-

terns as shown in Figure 5c. Therefore, we define that a respiration

segment starts from a trough and goes through a crest, which indi-

cates the inspiration stage. Then the respiration segment ends at the

second trough from the crest, which indicates the expiration stage.

To identify the accurate positions for crests and troughs, we de-

velop a Crests/Troughs Points Selection algorithm, which applies two

thresholds (i.e.,𝑇𝑚𝑎𝑥 and𝑇𝑚𝑖𝑛) to restrict the minimum distances

between two neighboring crests or troughs, respectively. We adopt

threshold 13 for𝑇𝑚𝑎𝑥 and 11 for𝑇𝑚𝑖𝑛 based on normal respiration
rate (12 to 16 breaths per minute). Additionally, we also develop a

Fake Crests/Troughs Removing algorithm, which iteratively removes

the redundant crests between two troughs and redundant troughs

between two crests. Figure 5d shows our segmentation method can

effectively determine respiration segments. Moreover, we employ a

Euclidean Distance-based DTW algorithm for respiratory outlier

(i.e., generated by body movements and environmental noise) iden-

tification and removing. The basic idea is to leverage DTW distance

between the outlier and regular respiratory segments to identify

the outlier. Specifically, in the training phase, we derive a similarity

index based on DTW distances among a few regular respiratory

segments of the user. The similarity index between 𝑛 respiration
segments is defined as:

𝐼𝑛𝑑𝑒𝑥 (𝑉 ) = 1/𝑛
∑𝑛

𝑢=1
𝑑𝑡𝑤 (𝑢, 𝑣), (5)

where 𝑢 ∈ [1, 𝑛] and 𝑣 ∈ [1, 𝑛]. In the testing phase, we calculate
the DTW distances between each incoming segment. If the DTW

distance exceeds the similarity index, we consider the incoming

segment as an outlier.

5.2 Respiratory Feature Extraction

Fiducial Features. In order to obtain unique respiratory charac-

teristics, we conduct multidimensional extraction of the fiducial

characteristics to derive the 9 fiducial features that characterize rep-

resentative patterns in each respiration segment of one tag’s signal

(e.g., chest or abdomen). Specifically, respiration width (𝑊 ) repre-

sents the time duration of one respiration segment from left trough

to right trough. left width (𝑊 𝑙 ) and right width (𝑊 𝑟 ) represents the

time duration of one respiration segment from left trough to crest

and crest to right trough. left height (𝐻 𝑙 ) and right height (𝐻𝑟 ) is the

difference of the phase amplitude between the left and right trough

and crest. Let 𝑓 𝑙𝑝 denote the ratio of time duration to amplitude

difference for the inspiration segment: 𝑓 𝑙𝑝 =𝑊 𝑙
𝑝/𝐻

𝑙
𝑝 , describing the

relationship between the inspiration depth and inspiration time

duration when a respiratory motion is finished 𝑝%: let 𝑓 𝑟𝑝 denote

the ratio of time duration to amplitude for the expiration segment:

𝑓 𝑟𝑝 =𝑊 𝑟
𝑝 /𝐻

𝑟
𝑝 , representing the relationship between the expiration

depth and expiration time duration when an expiration motion is

finished 𝑝%. Based on 41 people’s respiration data collected in this
work, we empirically determine 𝑝 = 50, 100 to compute the fiducial

features 𝑓 𝑙𝑝 and 𝑓 𝑟𝑝 , respectively. A total of 9 fiducial features can

then be obtained for each respiration segment for each tag as shown

in Figure 6 . We find that these features are generally effective for

user verification because they are connected to human respiration

systems and are always available regardless of the source of the

RFID measurements (i.e., either chests or abdomens). Since we have

two tags on the chest and abdomen independently, we extract 18

fiducial features containing the unique physiological characteristics

of respiratory patterns for different people with different breathing

styles.

Fuzzy Wavelet Packet Features. In addition to the fiducial

features, we perform FWPT on each respiratory segment to con-

struct fine-grained respiratory features. FWPT decomposes approx-

imation and detail subspaces of the raw respiratory segment to

realize fine-grained multi-resolution (i.e., time-frequency) analysis.

Therefore, FWPT can capture the distinct respiratory biometrics by

analyzing the minuscule differences of respiratory movements and

vibrations for different body parts in various frequency domains.

Particularly, we perform 8 level fuzzy wavelet packet decomposi-

tions obtaining 511 wavelet subspaces as FWPT features for each

respiration segment obtained from each tag.

To improve the uniqueness of the extracted features, we develop

an intrinsic physiological feature that concatenates the fiducial and

FWPT features extracted from the RFID tags on the chest and ab-

domen. We note that this feature retains the comprehensive biomet-

ric characteristics derived from independent respiratory motions

of both chest and abdomen. In contrast with existing fusion studies

that accumulate the maximum value of features from different tags,

our approach keeps the essential biometric information captured

by each tag as a unique footprint to identify users effectively.

5.3 Machine learning based User Verification

We develop a user verification module using GBDT. Compared to

other machine learning methods (e.g., Random Forest, SVM, and

Neural Network), GBDT has the advantage of providing higher

accuracy with lower training cost, the flexibility of optimizing on

different loss functions to handling mixed features with different

scales, which is exactly the characteristic of the intrinsic physiolog-

ical features [36]. Specifically, given 𝑁 training samples {(𝑥𝑖 , 𝑦𝑖 )},
where 𝑥𝑖 and 𝑦𝑖 represent the intrinsic physiological features set
and the corresponding identity label of the user (i.e., 𝑦𝑖 = 1 or 0

represents whether 𝑥𝑖 is from a legitimate user or not), the objective
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Figure 7: Illustration of experimental setup.

of GBDT is to minimize the loss function as follows:

𝐿 =
𝑁∑

𝑖=1

𝑙 (𝑦𝑖 , 𝜙 (𝑥𝑖 )), (6)

where 𝜙 (·) is a optimization fuction and 𝜙 (𝑥𝑖 ) =
∑𝑀
𝑚=1 𝜔𝑚𝜆𝑚 (𝑥𝑖 ).

GBDT aims to find a appropriate 𝜙 (·) to minimize the loss function
𝑙 (·) by selecting the optimal weak learners𝜆𝑚 and weights 𝜔𝑚 .

We adopt the GBDT implementation from the Scikit-learn [4].

In order to optimize the speed and accuracy of the GBDT model,

we empirically choose the loss function 𝑙 = 𝑒𝑦𝑖𝜙 (𝑥𝑖 ) and use the

following parameter set to train the GBDT classifier: number of

estimators = 2000, learning rate = 0.01, max depth = 50, and sub-

sampling = 0.6. During the training phase, we train a binary GBDT

classifier for each legitimate user. In the verification, the system

uses the trained binary classifiers to classify incoming respiration-

related feature set 𝑥 . We compute confidence scores from each

binary classifier and select the output of the classifier generating

the highest confidence score as the final user verification result.

Majority Voting and Adaptive Training. In this study, a ma-

jority voting mechanism that combines the results of multiple con-

tinuous segments is used to achieve high verification accuracy. Our

system selects the classification result receiving more than half of

the votes. Specifically, we consider 𝑇 continuous RFID segments

as a basic user verification unit. If half or more than half of the

respiratory segments in a window are classified as the same legiti-

mate user, the system determines that the legitimate user is verified.

Otherwise, the user does not pass the user verification. This pro-

cess can significantly reduce the verification errors and improve

the robustness of our system. Unless mentioned elsewhere, 𝑇 is 3

respiration segments, which generally provide good performance,

as shown in our evaluation.

We observe that users’ respiratory patterns may vary slightly on

different days since their respirations may be influenced by various

factors (e.g., health conditions, emotions, and body temperatures).

Therefore, we employ an adaptive training mechanism to fine-

tune the trained classifier based on recent RFID measurements.

Specifically, we define the user verification success rate𝑉𝑒𝑟𝑠 as the
number of successful verification events 𝐸𝑣𝑒𝑠 over the total number
of verification events 𝐸𝑣𝑒𝑡 within a time window (e.g., 60 mins). Our

system continuously performs user verification at a designated rate

(e.g., 18 verification events per min) and derives the 𝑉𝑒𝑟𝑠 for each
user.When a user fails the user verification, the system asks the user

to provide the credential (e.g., password) to confirm the identity and

records it as a failure event 𝐸𝑣𝑒𝑓 . Otherwise, the system records

it as a 𝐸𝑣𝑒𝑠 . When the 𝑉𝑒𝑟𝑠 of the user is below a threshold (e.g.,

90%), the system determines that the user’s respiratory patterns

have slightly changed and then re-trains the model to improve the

system performance by adding a small portion of recently verified

RFID data (e.g., 𝑡𝑒𝑛 segments) into training datasets.

6 PERFORMENCE EVALUATION

6.1 Experimental Methodology

Hardware and Software.We use a commodity RFID reader Impinj

R420, equipped with a directional antenna Laird S9028PCL, to col-

lect data from the RFID signals sent by Impinj E41-B tags. The RFID

signals hop among 50 channels within a spectrum from 902.5MHz
to 927.5MHz. We implement a user interface and a verification

module on a Thinkpad laptop, which collects data (i.e, phases, and

time stamps) from the RFID reader through the low-level reader

protocal - LLRP.

Experimental Setups. We attach two RFID tags to a partic-

ipant’s clothes in the chest and abdomen areas as shown in Fig-

ure 7(a). During each experiment, a participant sits on a chair that is

1m in front of the antenna. We keep the antenna at the same height

as the participant’s chest as shown in Figure 7(b). Participants are

asked to breath normally during the experiments. To evaluate our

system’s robustness in different environments, we conduct experi-

ments in four types of indoor spaces including a bedroom with a

twin-size bed (4.2m×4.3m), a typical lab with office furniture and
(3.0m×5.0m), a corridor with no obstacle (2.8m×2.8m), and a home
office with office furniture (7.0m×4.0m).

Data Collection. We conduct extensive experiments with 41

participants (i.e., 33 males and 8 females, aging from 12 to 70) for 3

days at different times across 5 months. Each participant take part

in 10 experiments, each of which last 60s. We also collect about

200 − 300 respiration segments for imitation attacks, treating 1

participant as a legitimate user and 15 participants as the attackers.

Unless mentioned otherwise, we use 70% respiration segments of

each legitimate participant for training and the rest of the segments

for testing.

6.2 Evaluation Metrics

Our system periodically verifies users based on the specific RFID

segments. We define our evaluation metrics as follows: 1) verifica-

tion accuracy - the percentage of the decisions declaring legitimate

users correctly; 2) attack detection rate (true positive rate) - the

percentage of decisions declaring attackers correctly; 3) attack false

detection rate (false positive rate) - the percentage of decisions in-

correctly declaring attackers; 4) receiver operating characteristics

(ROC) curve - showing the attack detection rates and attack false

detection rates under different values of thresholds.

6.3 Performance of Continuous User
Verification

We first evaluate the user verification accuracy under the random

attack and the imitation attack scenarios with different numbers of

respiration segments. Specifically, in the random attack scenario,

we consider 11 of the 41 participants as legitimate users, and the

other 30 act as attackers. In the imitation attack case, a particular

user is selected to be legitimate and 14 other users act as attackers.

Figure 8a illustrates the user verification accuracy under the random

and imitation attack scenarios. We observe that under the random

attack scenario, the average verification accuracy is over 93.8%

197



MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea Hu et al.

(a) Performance with different testing
segments

(b) Performance with different training
sizes

Figure 8: Impacts of the defferent testing segments and training size.

(a) ROC curves of random attack (b) ROC curves of imitation attack

Figure 9: ROC curves under random attack and imitation attacks.

when only one respiration segment is used. However, our system

still achieves more than 95.2% verification accuracy when 3 or

more respiration segments are used. Under the imitation attack, the

average verification accuracy is around 90.4% using 1 respiration

segment. The accuracy is lower is because a dedicated attacker

is set to imitate legitimate users’ respiratory patterns. However,

the accuracy can still reach over 94.8% when 3 or more respiration

segments are used. These results demonstrate that our system using

commodity RFID devices is promising in practice.

Moreover, our system under the random attack scenario can

achieve over 94.8% attack detection rate and less than 3.9% for at-

tack false detection rate with 3 or more respiration segments. In

addition, our system achieves over 92.1% attack detection rate and

less than 4.2% attack false detection rate with 3 or more respira-

tion segments under the imitation attack. Those results, which are

shown in Figure 9a and Figure 9b, demonstrate that our system is

robust against attack scenarios.

In addition, we examine the four additional machine learning

models, SVM, neural network (neurons: 60-60-30), LeNet-5, and

ResNet-50, as a comparison to the GBDT model, respectively. We

observe that the GBDT achieves the best verification accuracy of

95.2% than other models, whose verification accuracies are 82.2%,
69.2%, 45.2%, 40.9% with 20 training and 3 testing segments, re-

spectively. This result indicates that GBDT is easily tuned with

a few training samples and is more suitable for our continuous

verification system than the other machine learning methods.

6.4 Impact of Various Factors

Impact of Number of Testing Segments. We design a major-

ity voting method that uses a 1,3,5,7,9 of continuous respiration

segments (i.e., about 3𝑠, 9𝑠, 15𝑠, 21𝑠 , and 27𝑠) to perform the user

verification task. We confirm the effectiveness of our majority vot-

ing algorithm using multiple respiration segments for testing. For

example, the results in Figure 8a show the average verification accu-

racy increases from around 93.8% to over 96.1%, when we increase

Figure 10: Illustration of experimental setup for orientation and

verifying multiple users.

(a) Performance on different orienta-
tion

(b) Performance on different distances

Figure 11: The impacts of the different orientation and distances.

the number of testing segments from 1 to 9 for the random attack.

We also observe that the average verification accuracy increases

significantly from 90.1% to 95.3% as the testing segments increase

from 1-9 for imitation attack. We have the same observation on the

system performance under various attacks as shown in Figure 9a,

and Figure 9b. When there are more available testing segments for

testing, the ROC curve hugs the point (0,1) more, which indicates

the system has better performance on the attack detection.

Impact of Training Size. Since the training data size signifi-

cantly influences the ease of use in terms of data collection time,

we particularly test different training data sizes to evaluate our

system. The average verification accuracy of 41 participants shows

a growing trend with the increasing training size, which is shown in

Figure 8b. In particular, our system achieves an average verification

accuracy of 91.6% with 3 training segments. While increasing the

number of training segments to 10, the average verification accu-

racy then grows dramatically to over 93.8%. If we set the training
samples to over 20, the system can achieve a comparable verifi-

cation accuracy of over 95.2%. Moreover, the average verification
accuracy becomes stable with 20 to 40 samples. We observe the

accuracy gradually drop to 94.7% and 94.1% when using 100 and 200

training segments respectively caused by the overfitting problem.

Those results prove that our system is suitable for practical use

since it achieves high verification accuracy with limited training

segments (e.g., 20 respiration segments per user).

Impact of Tag Orientations. Since the performance of RFID

systems is influenced by antenna orientation as well as blockage

of line-of-sight paths by the human body, we evaluate the perfor-

mence at different horizontal and vertical orientations. Figure 10a

shows the antenna is moved from left to the right in front of the

user horizontally. The angle between the user and attenna is be-

tween ±40°. Figure 10b shows we adjust the direction of the antenna

at different vertical orientations within ±40°. Figure 11a plots the

verification accuracy with different horizontal and vertical orien-

tations. According to the experiment results, when the horizontal
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(a) Formation 1 (b) Formation 2

Figure 12: Performance comparison for verifying multiple users

simultaneously in two formations.

and vertical degrees are within the ±30°, the measurement accuracy

is around 95.8%. When the orientation is over ±40°, the accuracy

decreases to 75.0% − 65.4%, respectively. The reason is that when
the orientation exceeds ±40°, the reader can no longer identify the

tag or read low-level data.

Impact of Tag-Antenna Distances.We also study the perfor-

mance of user verification under various distances (i.e., 0.4m to

2.0m) between the target user and the RFID antenna. As shown

in Figure 11b, even for the longer distances (i.e., 2.0m), we can
still achieve a high verification accuracy of 90.1% using 3 testing

respiration segments. We observe that the performance keeps the

verification accuracy of 93.9% and 95.2% within the distance of 1.6m
with 1 and 3 testing respiration segment(s). The result demonstrates

that our system is robust to various distances.

Impact of Multiple Users. We examine the performance of

BioTag when multiple people are in the monitoring range of the

antenna simultaneously. Particularly, we consider two formations

for verifying 3 users with different distances between users as

illustrated in Figure 10c: 1) Formation 1: User 1 is fixed, user 2 and

user 3 move away from user 1 with different horizontal distances of

0cm, 10cm, 20cm, 30cm, and 40cm. 2) Formation 2: User 2 and user

3 are fixed. The horizontal distances between user 1 and user 2, and

user 1 and user 3 are 30cm. The vertical distances between user 1

and the antenna is 40cm, 80cm, 120m, 160m and 200cm. Figure 12a

shows that BioTag maintains a similarly high accuracy (i.e., 96.4%,
94.5%, and 93.3%) for the three users in Formation 1 when the

distances between them are less than 30cm. The accuracy of user

2 and 3 degrade to around 60.2% when the distance is over 30cm,

indicating the users are out of the monitoring range. Figure 12b

shows that the accuracy of three users in Formation 2 keeps the

same when the distance between user 1 and the antenna is less

than 1.6m. When the distance is over 1.6m, the accuracy of user
1 drops to 88.4%, and the other two users still keep the similar

accuracy, indicating BioTag can efficiently distinguish the multiple

users simultaneously as long as they are within the monitoring

range (i.e., 1.6m).
Impact of Clothes.We design 3 scenarios to evaluate the impact

of different layers of clothes and materials on our performance.

Specifically, 1) Scenario 1: C1-C6 denote the users wearing one layer

of clothesmade from differentmaterials (i.e., underwear (94% cotton,

6% polyester), T-shirt (100% cotton), shirt (100% cotton), sweater-1

(100% polyester), sweater-2 (100% cotton), jacket(100% polyester +

100% cotton)) with the tags on the clothes. 2) Scenario 2: C7-C10

denote the users wearing two layers of clothes (i.e., underwear with

shirt, T-shirt with sweater-1, shirt with sweater-1, and shirt with

(a) Different clothes (b) With and without adaptive training

Figure 13: Performance comparison with different clothes and

with/without adaptive training.

down jacket) with the tags on the outer-layer clothes. 3) Scenario 3:

C11-C14 denote the users wearing the same clothes as C7-C10 but

with two tags attached between two layers of the clothes. Figure 13a

shows that we can achieve over 95.9% verification accuracy when

the users wear one layer of clothes regardless of the materials.

In Scenario 2 and Scenario 3, we can observe that the average

verification accuracy drops with the increasing clothes’ thickness

in a range of 95.8% − 58.6%. This is mainly because thick clothes
block RFID, resulting in smaller signal-to-noise-ratio. In addition,

thick clothes are usually too stiff to move with respiration.

Effectiveness of Adaptive Training.We evaluate our adaptive

training using the data collected by 28 of 41 users across three

different days in the same hours (i.e., 1 − 3𝑃𝑀). In Figure 13b, 𝑇𝑟1
represents the training set is only from day 1.𝑇𝑟2 and𝑇𝑟3 represent
the mixed training set, including the data from both day 1 + day 2

and day 1 + day 3, respectively. We can see that our system trained

by 𝑇𝑟1 can achieve 94.6% accuracy during day 1, and decrease

5% during day 2 and 6% during day 3, respectively. These results

demonstrate that the respiratory pattern has some fluctuations

over time due to participants’ status (e.g., pain, body temperature,

body position) that slightly impact the system performance. The

figure shows that after applying the adaptive training using the

data from 𝑇𝑟2 and 𝑇𝑟3, the accuracy increases to 94.5% and 94.6%
on day 2 and day 3, respectively. Those results prove that our

system is suitable for continuous user verification with few times

of adaptively retraining on a very small amount of new data (i.e., a

routine retrain every 3 hours with only 1-min new data).

7 DISCUSSION

1. Respiratory Pattern Dynamics. We find vigorous exercise

would significantly affect the respiratory patterns in terms of mor-

phological characteristics, leading to changes in fiducial features

and failures in our system. Such cases can be addressed by asking

users to wait for a short time (e.g., 3mins) until their respiration be-

come normal. It is also possible to train a model using the users’ data

collected during the exercise recovering period to enable continuous

user verification under normal or after exercises. 2. Environmen-

tal Dynamics. We find RFID signals are susceptible to dynamic

environmental changes (e.g., people walking around). Since the

normal breathing frequency is in the range of 0.2 − 0.3 Hz and the
typical bandwidth of normal human gestures is between 4 and 6 Hz,

adopting a low-pass filter could be a potential way of effectively

mitigating such impacts. As for other human daily activities, their

frequency [10] resides in the range between 0 and 20 Hz. Therefore,

we can use advanced signal processing techniques (e.g., empirical
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mode decomposition) to filter out noises with overlapping frequen-

cies as human respiration. 3. Body Movements and Emotions.

Our experiments are conducted with participants sitting on a chair

to keep their bodies stable with normal emotions. We find that the

participants experience some nonspontaneous body movements

(e.g., body moving back and forth) when they conduct the experi-

ments standing. Furthermore, the various emotions (e.g., anxiety

and excitement) also impact the respiratory pattern. Therefore,

we plan to explore additional tags at different positions and deep-

learning-based user motion mitigation methods in our future work

to remove the impacts of nonspontaneous body movements. We

also plan to examine the impact of user emotion and improve the

robustness and accuracy of our system in realistic environments.

8 CONCLUSION

We propose BioTag, a continuous user verification system that can

identify legitimate users by leveraging the physiological features of

respirator patterns captured by commodity low-cost RFID devices.

In this work, we extensively explore and identify the effective lo-

cations on human bodies for capturing unique holistic respiratory

characteristics using RFID tags. We develop unique respiratory fea-

tures based on waveform morphology analysis and fuzzy wavelet

transformation. We also design an adaptive GBDT classifier that

accurately identifies legitimate users and attackers. Extensive ex-

periments involving 41 participants demonstrate that the proposed

system robustly verifies users’ identities and detects attackers under

random and imitation attacks with only a little training effort.

ACKNOWLEDGMENT

This work was partially supported by the the National Science Foun-

dation Grants CCF2028873, CCF1909963, CNS2120350, CNS2120396,

CCF2000480, CNS2120276, and CNS2145389.

REFERENCES
[1] Fadel Adib, Hongzi Mao, Zachary Kabelac, Dina Katabi, and Robert C Miller. 2015.

Smart homes that monitor breathing and heart rate. In Proceedings of the 33rd
annual ACM conference on human factors in computing systems. 837–846.

[2] Adam J Aviv, Katherine L Gibson, Evan Mossop, Matt Blaze, and Jonathan M
Smith. 2010. Smudge attacks on smartphone touch screens. Woot 10 (2010), 1–7.

[3] Sheldon R Braun. 1990. Respiratory rate and pattern. Clinical Methods: The
History, Physical, and Laboratory Examinations. 3rd edition (1990).

[4] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas
Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël
Varoquaux. 2013. API design for machine learning software: experiences from
the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining
and Machine Learning. 108–122.

[5] Jagmohan Chauhan, Yining Hu, Suranga Seneviratne, Archan Misra, Aruna
Seneviratne, and Youngki Lee. 2017. BreathPrint: Breathing acoustics-based user
authentication. In Proceedings of the 15th Annual International Conference on
Mobile Systems, Applications, and Services. 278–291.

[6] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189–1232.

[7] Anna Huang, Dong Wang, Run Zhao, and Qian Zhang. 2019. Au-id: Automatic
user identification and authentication through the motions captured from se-
quential human activities using rfid. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 3, 2 (2019), 1–26.

[8] Espen Alexander Fürst EAFI Ihlen. 2012. Introduction to multifractal detrended
fluctuation analysis in Matlab. Frontiers in physiology 3 (2012), 141.

[9] Nima Karimian, Mark Tehranipoor, and Domenic Forte. 2017. Non-fiducial ppg-
based authentication for healthcare application. In 2017 IEEE EMBS international
conference on biomedical & health informatics (BHI). IEEE, 429–432.

[10] Rinat Khusainov, Djamel Azzi, Ifeyinwa EAchumba, and Sebastian D Bersch. 2013.
Real-time human ambulation, activity, and physiological monitoring: Taxonomy
of issues, techniques, applications, challenges and limitations. Sensors 13, 10
(2013), 12852–12902.

[11] Rami N Khushaba, Sarath Kodagoda, Sara Lal, and Gamini Dissanayake. 2010. Dri-
ver drowsiness classification using fuzzy wavelet-packet-based feature-extraction
algorithm. IEEE transactions on biomedical engineering 58, 1 (2010), 121–131.

[12] Arash Habibi Lashkari, Samaneh Farmand, Dr Zakaria, Omar Bin, Dr Saleh,
et al. 2009. Shoulder surfing attack in graphical password authentication. arXiv
preprint arXiv:0912.0951 (2009).

[13] Feng Lin, Chen Song, Yan Zhuang, Wenyao Xu, Changzhi Li, and Kui Ren. 2017.
Cardiac scan: A non-contact and continuous heart-based user authentication
system. In Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking. 315–328.

[14] Jian Liu, Yingying Chen, Yudi Dong, Yan Wang, Tiannming Zhao, and Yu-Dong
Yao. 2020. Continuous user verification via respiratory biometrics. In IEEE
INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 1–10.

[15] Shrirang Mare, Andrés Molina Markham, Cory Cornelius, Ronald Peterson, and
David Kotz. 2014. Zebra: Zero-effort bilateral recurring authentication. In 2014
IEEE Symposium on Security and Privacy. IEEE, 705–720.

[16] Sky McKinley and Megan Levine. 1998. Cubic spline interpolation. College of the
Redwoods 45, 1 (1998), 1049–1060.

[17] Gilad Mishne. 2006. Autotag: a collaborative approach to automated tag assign-
ment for weblog posts. In Proceedings of the 15th international conference on World
Wide Web. 953–954.

[18] Meinard Müller. 2007. Dynamic time warping. Information retrieval for music
and motion (2007), 69–84.

[19] Jingyi Ning, Lei Xie, Chuyu Wang, Yanling Bu, Fengyuan Xu, Da-Wei Zhou,
Sanglu Lu, and Baoliu Ye. 2021. RF-Badge: Vital Sign-based Authentication via
RFID Tag Array on Badges. IEEE Transactions on Mobile Computing (2021).

[20] Verônica F Parreira, Carolina J Bueno, Danielle C França, Danielle SR Vieira,
Dirceu R Pereira, and Raquel R Britto. 2010. Breathing pattern and thoracoabdom-
inal motion in healthy individuals: influence of age and sex. Brazilian Journal of
Physical Therapy 14 (2010), 411–416.

[21] Konstantinos N Plataniotis, Dimitrios Hatzinakos, and Jimmy KM Lee. 2006. ECG
biometric recognition without fiducial detection. In 2006 Biometrics symposium:
Special session on research at the biometric consortium conference. IEEE, 1–6.

[22] Maria Ragnarsdóttir and Ella Kolbrun Kristinsdóttir. 2006. Breathing movements
and breathing patterns among healthy men and women 20–69 years of age.
Respiration 73, 1 (2006), 48–54.

[23] Mark Roberti. 2004. EPCglobal ratifies Gen 2 standard. RFID Journal 16 (2004).
[24] Roger P Simon, Michael Jeffrey Aminoff, David A Greenberg, et al. 2009. Clinical

neurology. Lange Medical Books/McGraw-Hill.
[25] Issa Traore, Isaac Woungang, Mohammad S Obaidat, Youssef Nakkabi, and Iris

Lai. 2012. Combining mouse and keystroke dynamics biometrics for risk-based
authentication in web environments. In 2012 fourth international conference on
digital home. IEEE, 138–145.

[26] Aggeliki Tsoli, Naureen Mahmood, and Michael J Black. 2014. Breathing life
into shape: Capturing, modeling and animating 3D human breathing. ACM
Transactions on graphics (TOG) 33, 4 (2014), 1–11.

[27] ChuyuWang, Lei Xie,WeiWang, Yingying Chen, Yanling Bu, and Sanglu Lu. 2018.
Rf-ecg: Heart rate variability assessment based on cots rfid tag array. Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 2 (2018),
1–26.

[28] Fei Wang, Zhenjiang Li, and Jinsong Han. 2019. Continuous user authentication
by contactless wireless sensing. IEEE Internet of Things Journal 6, 5 (2019),
8323–8331.

[29] Yanwen Wang and Yuanqing Zheng. 2019. TagBreathe: Monitor breathing with
commodity RFID systems. IEEE Transactions on Mobile Computing 19, 4 (2019),
969–981.

[30] GregWelch, Gary Bishop, et al. 1995. An introduction to the Kalman filter. (1995).
[31] Weiye Xu, Jianwei Liu, Shimin Zhang, Yuanqing Zheng, Feng Lin, Jinsong Han,

Fu Xiao, and Kui Ren. 2021. RFace: anti-spoofing facial authentication using cots
rfid. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications. IEEE,
1–10.

[32] Chao Yang, Xuyu Wang, and Shiwen Mao. 2018. AutoTag: Recurrent variational
autoencoder for unsupervised apnea detection with RFID tags. In 2018 IEEE
Global Communications Conference (GLOBECOM). IEEE, 1–7.

[33] Lei Yang, Yekui Chen, Xiang-Yang Li, Chaowei Xiao, Mo Li, and Yunhao Liu.
2014. Tagoram: Real-time tracking of mobile RFID tags to high precision using
COTS devices. In Proceedings of the 20th annual international conference on Mobile
computing and networking. 237–248.

[34] Yunze Zeng, Parth H Pathak, and Prasant Mohapatra. 2016. WiWho: WiFi-
based person identification in smart spaces. In 2016 15th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN). IEEE, 1–12.

[35] Shigeng Zhang, Xuan Liu, Yangyang Liu, Bo Ding, Song Guo, and Jianxin Wang.
2020. Accurate respiration monitoring for mobile users with commercial RFID
devices. IEEE Journal on Selected Areas in Communications 39, 2 (2020), 513–525.

[36] Tianming Zhao, Yan Wang, Jian Liu, Yingying Chen, Jerry Cheng, and Jiadi Yu.
2020. Trueheart: Continuous authentication on wrist-worn wearables using
ppg-based biometrics. In IEEE INFOCOM 2020-IEEE Conference on Computer
Communications. IEEE, 30–39.

200


